Rainbow perfect domination in lattice graphs
نویسندگان
چکیده
منابع مشابه
Rainbow Domination in Graphs
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G,...
متن کاملTotal $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملRoman domination perfect graphs
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
متن کاملPerfect k-domination in graphs
Let k be a positive integer. A vertex subset D of a graph G = (V,E) is a perfect k-dominating set of G if every vertex v of G, not in D, is adjacent to exactly k vertices of D. The minimum cardinality of a perfect k-dominating set of G is the perfect k-domination number γkp(G). In this paper, we generalize perfect domination to perfect k-domination, where many bounds of γkp(G) are obtained. We ...
متن کاملUnique domination and domination perfect graphs
We review a characterization of domination perfect graphs in terms of forbidden induced subgraphs obtained by Zverovich and Zverovich [12] using a computer code. Then we apply it to a problem of unique domination in graphs recently proposed by Fischermann and Volkmann. 1 Domination perfect graphs Let G be a graph. A set D ⊆ V (G) is a dominating set of G if each vertex of G either belongs to D ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Graph Theory and Applications
سال: 2018
ISSN: 2338-2287
DOI: 10.5614/ejgta.2018.6.1.7